
Python
Bootcamp 2021

Outline for today

• Setup Anaconda
• Running Python
• Variables and Assignment
• Data Type
• Built-in functions
• Conditionals
• Loops

Outline for today

• Setup Anaconda
• Running Python
• Variables and Assignment
• Data Type
• Built-in functions
• Conditionals
• Loops

Setup Anaconda

Setup Anaconda

Setup Anaconda
• >On your bash shell

• $ conda create --name bootcamp2021

• proceed ([y]/n)?

• Y

• $ conda info --envs

• $ conda env list

• $ conda activate bootcamp2021

• $ conda list -n bootcamp2021

• $ conda install package-name

• $ conda install package-name=2.3.4

• https://conda.io/projects/conda/en/latest/user-
guide/tasks/manage-environments.html

• https://docs.anaconda.com/anaconda/user-
guide/tasks/install-packages/

• $conda create –name bootcamp2021 –clone base

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.anaconda.com/anaconda/user-guide/tasks/install-packages/

Scripts /Spyder/Jupyter Notebook/JupyterLab

• All have pros/cons
• Choose what works best for you
• It is okay to switch between platforms

Python Scripts

• Run scripts on your bash shell
• $python

>>>
>>>print(‘hello world’)
>>>exit() #Go back to your bash shell ($)

• $ vim hello_world.py
• print(‘hello world’)
• $python hello_world.py

• vim
• Insert mode (i)
• Type your script/notes
• esc
• :wq

Python Scripts-Atom/Text Editor

On your bash shell
$python hello_world_bootcamp.py
hello world

Spyder

Script
Code
goes here

Declared
Variables

Output

Spyder

Run your code

Spyder

Debug your
code

More on this later

Jupyter Lab (.ipynb)

https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

Cell – Code

Output

To run a cell:
shift + enter

$ jupyter lab

https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

Jupyter notebook (.ipynb)

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

$ jupyter notebook

•When in Command mode (esc/gray),
• The b key will make a new cell below the currently selected cell.
• The a key will make one above.
• The x key will delete the current cell.
• The z key will undo your last cell operation (which could be a

deletion, creation, etc).

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Jupyter notebook (.ipynb)
•Markdown great for commenting/adding notes to your code!

•A simple plain-text format for writing lists, links, and other things that might go into a
web page.

Turn the current cell into a Markdown cell by entering the Command mode (Esc)
and press the M key.

In []: will disappear to show it is no longer a code cell and you will be able to write in
Markdown.

Turn the current cell into a Code cell by entering the Command mode (Esc) and
press the y key

Markdown – html
* Use asterisks
* to create
* bullet lists.

A Level-1 Heading

A Level-2 Heading (etc.)

[Create links](http://software-carpentry.org) with `...`.

Or use [named links][data_carpentry]. [data_carpentry]:
http://datacarpentry.org

Lists

Headings

urls + links

Outline for today

• Setup Anaconda
• Running Python
• Variables and Assignment
• Data Type
• Built-in functions
• Packages
• Conditionals
• Loops

Variables and Assignments

• In Python the = symbol assigns the value on the right to the name on
the left
• age = 42
• my_name = ‘Crisel Suarez’
• Grade1 = ‘A’

• Variable names
• can only contain letters, digits, and underscore _
• cannot start with a digit
• are case sensitive (age, Age and AGE are three different variables)

• first_name = ‘Kathy ’
• age = 10
• print(first_name, 'is', age, 'years old’)

• Variables can be used in calculations:
• new_age = age +10

• Indexing
• print(first_name[0]

Variables and Assignments

*** Python indexing starts at 0 ***

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Key Points

• Use variables to store values.
• Use print() to display values.
• Variables persist between cells.
• Variables must be created before they are used.
• Variables can be used in calculations.

Jupyter Magic Commands

• %run hello.py
• %%time
• % who
• %who str | % who int
• %pinfo <variable>
• %env
• %matplotlib inline
• %load hello.py
• %lsmagic https://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm

https://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm

Jupyter Magic Commands

• Can run Unix commands straight from your Jupyter Notebooks
• !
• !head –n 5 haiku.txt
• !pip install astropy

• Almost all the things we learned in Unix we can use in Jupyter
Notebooks

Data Types

• str() – String
• Concatenation +
• Repetition *

• int()- integer
• Float() - decimals
• Type() > What kind of data type

Math

• Add +
• Subtract -
• Multiply *
• Divide /
• Power **
• Reminder %
• Absolute value abs()

Operators

• Equal to ==
• Not equal to !=
• Greater than >
• Less than <
• Greater or equal >=
• Less or equal <=

Operators

• and
• or
• in (Membership)
• not in (Membership)
• True
• False

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Indexing and Slices

• [start:stop]
• atom_name = 'sodium’
• print(atom_name[0:3])
• > sod

• len(atom_name)
• 6

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Lists

• Storing multiple variables

• pressures = [0.273, 0.275, 0.277, 0.275, 0.276]

• print('pressures:', pressures)
• print('length:', len(pressures))
• print('zeroth item of pressures:', pressures[0])

• pressures[0] = 0.265

•

Lists – Appending

• list_name.append()

• primes = [2, 3, 5]

• print('primes is initially:', primes)

• primes.append(7)

• print('primes has become:', primes)

Lists – Deleting

• del list_name[index] to remove an element from a list

• primes = [2, 3, 5, 7, 9]
• print('primes before removing last item:', primes)
• del primes[4]
• print('primes after removing last item:', primes)

List- Empty []

• Empty_list = []

• Helpful as a starting point for collecting values

Practice:

• print('string to list:', list('tin’))
• print('list to string:', ''.join(['g', 'o', 'l', 'd’]))

What does list do?
What does .join do?

*We will come back to list with Numpy’s version …arrays

Key Points

• Use an index to get a single character from a string.
• Use a slice to get a substring.
• Use the built-in function len() to find the length of a string.
• Python is case-sensitive.
• Use meaningful variable names

Dictionaries {} or dict()

• Mutable key-value pairs

• zoo = {‘cats’ : 4 , ‘dogs’: 5, ‘goats’: 3, ‘camels’ : 2 }
• person = dict(name = "John", age = 36, country = "Norway")

• zoo[‘cats’]
• > 4

• zoo.keys()
• zoo.values()
• zoo.items()

Dictionaries

• food = {‘breakfast’ : 2 , ‘lunch’: ‘salad’,
‘dinner’: {‘first_course’ : ‘soup’,

‘second_course’: ‘chicken’ }
desert = [‘flan’, ’coockies’, ‘NY_cheesecakes’]}

• food['dinner']['first_course’]
• food['dessert'][0]

Tuple – ()

• Tuples are used to store multiple items in a single variable.
• A tuple is a collection which is ordered and unchangeable.
• Tuples are written with parentheses ()
• Allows duplicated items
thistuple = ("apple", "banana", "cherry")

thistuple = ("apple", "banana", "cherry", "apple", "cherry")

Sets – {}

• Unordered
• Unchangeable
• No duplicate values.

thistuple = {"apple", "banana", "cherry”}

thistuple = {"apple", "banana", "cherry", "apple", "cherry”}

Python Collections

• List is a collection which is ordered and changeable. Allows duplicate
members.
• Tuple is a collection which is ordered and unchangeable. Allows

duplicate members.
• Set is a collection which is unordered and unindexed. No duplicate

members.
• Dictionary is a collection which is ordered* and changeable. No

duplicate members.

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Built-in functions

• Think math function
• f(x) = x + 5
• x -> input
• f(x) -> output

• Functions can take 0 or many arguments
• print()
• f(x1, x2, x3,…) = x1+ x2+x3 +…..

• max(1,2,3)
• min(5,6,7)
• round(3.712, 1) #rounds to 1 decimal place

• help(round)

Built-in functions

Functions attached to objects are called
methods
• Methods have parentheses like functions, but come after the

variable.

my_string = 'Hello world!' # creation of a string object

print(my_string.swapcase())
calling the swapcase method on the my_string object

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Conditionals
• if (condition is True):

then do something

• if (condition is True):
then do something

• else:
• Do something else

• if (condition is True):
then do something

• elif (this condition is true):
• then do this

• else:
• Do this

Conditionals – Try it out
• mass = 3.4
• If mass > 3.0:
• print(‘Mass is ’ , mass)

• if mass > 3:
• print(‘Mass is less than 3’)

• else:
• print(‘Mass is more than 3’)

• if mass < 3.7:
print(‘mass less than 3.7’)

• elif (if mass > 3.2):
• print(‘mass greater than 3.2’)

• else:
• print(mass greater than 3.7 or

less than 3.2)

Conditionals – Try it out
• mass = 3.4
• If ((mass < 3.7) and (mass >3.2)):
• print(mass less than 3.7 or

greater than 3.2)

• mass = 3.4
• If ((mass < 3.7) or (mass >3.2)):
• print(mass less than 3.7 or

greater than 3.2

• mass = 3.8
• If ((mass < 3.7) or (mass >3.2)):
• print(mass less than 3.7 or

greater than 3.2

• mass = 3.8
• If ((mass < 3.7) and (mass >3.2)):
• print(mass less than 3.7 or

greater than 3.2

Conditionals

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Loops

Loops are a programming construct which allow us to repeat
a command or set of commands for each item in a list. As
such they are key to productivity improvements through
automation

i i<= 6 Output

2 True 3

4 True 5

6 True 7

8 False

Loops

Loops are a programming construct which allow us to repeat
a command or set of commands for each item in a list. As
such they are key to productivity improvements through
automation

Loops

• for number in [2, 3, 5]:
• print(number)

• primes = [2, 3, 5]
• for p in primes:
• squared = p ** 2
• cubed = p ** 3
• print(p, squared, cubed)

Loops

• The built-in function range produces a sequence of numbers.
• Not a list: the numbers are produced on demand to make looping

over large ranges more efficient.

• print('a range is not a list: range(0, 3)’)
• for number in range(0, 3):
• print(number)

https://docs.python.org/3/library/stdtypes.html

Loops – Practice

• # List of word lengths: ["red", "green", "blue"] => [3, 5, 4]
• lengths = ____
• for word in ["red", "green", "blue"]:
• lengths.____(____)

• print(lengths)

Loops – Practice

• # List of word lengths: ["red", "green", "blue"] => [3, 5, 4]
• lengths = []
• for word in ["red", "green", "blue"]:
• lengths.append(len(word))

• print(lengths)

Loops – Practice

• # Concatenate all words: ["red", "green", "blue"] => "redgreenblue”
• words = ["red", "green", "blue"]
• result = ____
• for ____ in ____:
• ____

• print(result)

Loops – Practice

• # Concatenate all words: ["red", "green", "blue"] => "redgreenblue”
• words = ["red", "green", "blue"]
• result = ””
• for word in words:
• result = result+word

• print(result)

Practice

• Write a program that prints the following pattern:

*
**

Practice

• Write a program that prints the following pattern:

*
**

for star in range(7):
print('*’ * star)

Outline- Friday

• Loops (cont.)
• Functions
• Packages
• Numpy
• Pandas
• Matplotlib

• Mini Project?

Practice

• Write a program that prints the following pattern:

*
**

Practice

• Write a program that prints the following pattern:

*
**

for star in range(7):
print('*’ * star)

While Loops

• Need to define an indexing variable***

i = 1
while i < 6:

print(i)
i += 1

i = 1
while i < 6:

print(i)
i += 1

else:
print("i is no longer less than 6")

Loop can run forever

Conditionals + Loops

i = 0
while i < 6:

i += 1
if i == 3:

print(”i is 3”)
print(i)

masses = [3.54, 2.07, 9.22, 1.86, 1.71]
for m in masses:

if m > 3.0:
print(m, 'is large’)

else:
print(m, ‘is small’)

Loops

• continue - stop the current iteration, and continue with the next

fruits =
["apple", "banana", "cherry"]
for x in fruits:
if x == "banana":
continue

print(x)

i = 0
while i < 6:
i += 1
if i == 3:
continue

print(i)

Loops

• break - stop the loop even if the while condition is true

i = 1
while i < 6:
print(i)
if i == 3:
break

i += 1

fruits =
["apple", "banana", "cherry"]
for x in fruits:
print(x)
if x == "banana":
break

Loops

• pass – ”Empty loop”

for x in [0, 1, 2]:
pass

Nested Loops
persons = ["John", "Marissa", "Pete", "Dayton"]
restaurants = ["Japanese", "American", "Mexican",
"French"]

for person in persons:
for restaurant in restaurants:

print(person + " eats " + restaurant)

Nested Conditionals

num = float(input("Enter a number: "))
if num >= 0:

if num == 0:
print("Zero")

else:
print("Positive number")

else:
print("Negative number")

Keypoints

• Use if statements to control whether or not a block of code is
executed.
• Conditionals are often used inside loops.
• Use else to execute a block of code when an if condition is not true.
• Use elif to specify additional tests.
• Create a table showing variables’ values to trace a program’s

execution.

Keypoints

• A for loop executes commands once for each value in a collection.
• A for loop is made up of a collection, a loop variable, and a body.
• The first line of the for loop must end with a colon, and the body

must be indented.
• Indentation is always meaningful in Python.
• Make meaningful loop variables
• The body of a loop can contain many statements.
• Use range to iterate over a sequence of numbers.

Outline Wednesday

• Jupyter Magic Commands
• Indexing and Slices
• Lists
• Built-in Functions
• Conditionals
• Loops
• Functions

Functions def()

def print_greeting():
print('Hello!')

def print_date(year, month, day):
joined = str(year) + '/' + str(month) + '/’ + str(day)
print(joined)

def average(values):
if len(values) == 0:

return None
return sum(values) / len(values)

***Functions return something

Practice

• Fill in the blanks to create a function that takes a list of numbers as an
argument and returns the first negative value in the list. What does
your function do if the list is empty?

def first_negative(values):
for v in ____:

if ____:
return ____

Practice

• Fill in the blanks to create a function that takes a list of numbers as an
argument and returns the first negative value in the list. What does
your function do if the list is empty?

def first_negative(values):
for v in values:

if v<0:
return v

Functions + Variable Scope

• Global variable
• Defined outside any particular function.
• Visible everywhere.

• Local variable
• Defined inside the function.
• Not visible in the main program.

pressure = 103.9
def adjust(t):

temperature = t * 1.43 / pressure
return temperature

Keypoints

• Break programs down into functions to make them easier to understand.

• Define a function using def with a name, parameters, and a block of code.

• Defining a function does not run it.

• Arguments in call are matched to parameters in definition.

