Python

Bootcamp 2021

Outline for today

e Setup Anaconda

* Running Python
 Variables and Assignment
* Data Type

* Built-in functions

* Conditionals

* Loops

Outline for today

e Setup Anaconda @ ———
* Running Python

 Variables and Assignment

* Data Type

* Built-in functions

* Conditionals

* Loops

D Anaconda Navigator
File Help

A Home

ﬁ Environments

‘ Learning

- Community JupyterLab
2.2.6

An extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

ANACONDA

Discover premium data
science content

Applications on Channels

J:prt.er
S’

°
Notebook

6.1.4

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

w0
N

Ya,
N
Powershell Prompt

0.0.1

Run a Powershell terminal with your current
environment from Navigator activated

Refresh

@ AnacondaNavigator File Help Q= Q = 9%@ Sun3:06PM Crisel Suarez i=
[BON)) Anaconda Navigator

{D ANACONDA NAVIGATOR © Ussrace Now

A Home

‘ Search Environments Installed ‘v| Channels Update index... Search Packages Q

X Name v T Description Version
ﬁ Environments base (roat) P

anaconda3

_anaconda_depends i) A 201812 i

o .
N Learning . _ipyw_jlab_nb_ex...) A configuration metapackage for enabling anaconda-bundled jupyter extensions 0.1.0
sun

alabaster) Configurable, python 2+3 compatible sphinx theme. 0.7.12
% Community sun3

anaconda Simplifies package management and deployment of anaconda custom

anaconda-client) Anaconda.org command line client library 1.7.2

anaconda-project) Tool for encapsulating, running, and reproducing data science projects

appnope) Disable app nap on os x 10.9

Setup Anaconda

* >0On your bash shell

° S conda create --name

* proceed ([y]/n)? e https://conda.io/projects/conda/en/latest/user-
oY guide/tasks/manage-environments.html

e S conda info --envs

e S conda env list e https://docs.anaconda.com/anaconda/user-
guide/tasks/install-packages/

* S conda activate
* S conda list -n
* S conda install package-name * Sconda create —name —clone

* S conda install package-name=2.3.4

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.anaconda.com/anaconda/user-guide/tasks/install-packages/

Scripts /Spyder/Jupyter Notebook/JupyterlLab

* All have pros/cons
* Choose what works best for you
* It is okay to switch between platforms

Python Scripts

* Run scripts on your bash shell

* Spython
>>>
>>>print(‘hello world’)
>>>exit() #Go back to your bash shell (S)
* Svim hello_world Ll

e print(‘hello world’) * Insert mode

- $Spython hello_ world * Type your script/notes

Python Scripts-Atom/Text Editor

hello_world_bootcamp.py — ~/Deskto

Welcome Guide iIndex.md schedule.html

print('hello world")

2

On your bash shell
Spython hello_world_bootcamp

Spyder <. —

File Edit Search Source Run Debug Consoles Projects Tools View Help

ODsB%E0

B3) ® 2

...nal\Courses\PythonProgrammerBootcamp2020\1. Spyder python files\8.8_dictionary_questions_UNSOLVED.py
[Test_ImportData.py < _xird.py * 8.8_dictionary_questions_UNSOLVED.py

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Question 2

Write python code that will create a dictionary containir
that represent the first 12 values of the Fibonacci seque
i.e {1:0,2:1,3:1,4:2,5:3,6:5,7:8 etc}

12 #number of iteration in the fibonacci sequence
0 #first position of fibonacci sequence

1 #second position and impact of next sequence
v = {} #same as creating d_kv = dict ()

Py

for i in range (1,n+1): #iterating the sequence starting
d_kv [i] = x # 1st sequence d_kv [1] = 0, d_kv [2] =
X,y =Y, Xty

print [{d_kv)

Question 3

Create a dictionary to represent the open, high, Tow, clc
for 4 imaginary companies. 'Python DS', 'PythonSoft', 'Py
the 4 sets of data are [12.87, 13.23, 11.42, 13.10],[23.f
[98.99,102.34,97.21,100.065],[203.63,207.54,202.43,205.2¢
companies = ['Python DS', 'PythonSoft', 'Pythazon', 'Pybc
status = ['Open', 'High', 'Low', 'Close']

prices = [[12.87, 13.23, 11.42, 13.10],[23.54,25.76,21.¢
[98.99,102.34,97.21,100.065],[203.63,207.54,202.43,205.2¢

d_sp = {}

< LSP Python: ready

F o€
& B B & Q

‘[Console 1/A

Kite: initializing

C:\Users\vechan

Nami~ Type Size Value
d_kv dict 12 {1:0, 2:1, 3:1, 4:2, 5:3, 6:5, 7:8, 8:13, 9:21,
i int 1 12
n int 12

int 144

int 233

Variable explorer Help Plots Files
ns

Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020, 15:34:40)
[MSC v.1827 64 bit (AMD64)]

Type "copyright", "credits" or "license" for more
information.

IPython 7.19.0 -- An enhanced Interactive Python.

In [1]:
n 12 #number of iteration in the fibonacci

sequence

X 0 #first position of fibonacci sequence
% 1 #second position and impact of next sequence
d_kv = {} #same as creating d_kv = dict ()

for i in ranne (1 n+1)- #iteratina the seauence
IPython console History

® custom (Python 3.9.0) Line 58, Col 13 UTF-8 CRLF RW Mem 51%
e ———

’ @ & < Ci\sers\vechan

erBootcamp2020\1. Spyder python files\8.8_dictionary_questions_UNSOLVED.py) ¥ , & Q

L]
est_ImportData.py * _xird.py < 8.8_dictionary_questions_UNSOLVED.py =
~ Nami~ Type Size VEIS
43 Question 2 g VRS .

44 Write python code that will create a dictionary containir d_kv dict 12 {1:0, 2:1, 3:1, 4:2, 5:3, 6:5, 7:8, 8:13, 9:21,
45 that represent the first 12 values of the Fibonacci seque

46 i.e {1:0,2:1,3:1,4:2,5:3,6:5,7:8 etc} i int 1 12

47 N :

48 n int 12

49 12 #number of iteration in the fibonacci sequence
50 0 #first position of fibonacci sequence

51 1 #second position and impact of next sequence int 233

D2, v = {} #same as creating d_kv = dict ()

53

54 for i in range (1,n+1): #iterating the sequence starting

59 d_kv [i] = x # 1st sequence d_kv [1] = 0, d_kv [2] =

56 X,y =y, xty

Y4 Variable explorer Help Plots Files

gg print [(d_kv}) O T e
€0 Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020, 15:34:40)
[MSC v.1827 64 bit (AMD64)]

Type "copyright", "credits" or "license" for more
information.

int 144

Py

Question 3

Create a dictionary to represent the open, high, Tow, clc
for 4 imaginary companies. 'Python DS', 'PythonSoft', 'Py
the 4 sets of data are [12.87, 13.23, 11.42, 13.10],[23.f

[98.99,102.34,97.21,100.065],[203.63,207.54,202.43,205.2¢ In [1]:

IPython 7.19.0 -- An enhanced Interactive Python.

. n 12 #number of iteration in the fibonacci
companies = ['Python DS', 'PythonSoft', 'Pythazon', 'Pybc

status = ['Open', 'High', 'Low', 'Close']
prices = [[12.87, 13.23, 11.42, 13.10],[283.54,25.76,21.¢
[98.99,102.34,97.21,100.065],[203.63,207.54,202.43,205.2¢

sequence

X 0 #first position of fibonacci sequence
% 1 #second position and impact of next sequence
d_kv = {} #same as creating d_kv = dict ()

d_sp = {} - for i in ranae (1 n+1)- #iteratina the seauence
IPython console History
¥ LSP Python: ready # Kite: initializing ® custom (Python 3.9.0) Line 58, Col 13 UTF-8 CRLF RW Mem 51%

Spyder ... o

File Edit Search Source Run Debygg

O

B%E o

C:\Users\vechan

...nal\Courses\PythonProgrammerBootca

[Test_ImportData.py *

43
44
45
46

_Xrd.py > 8.8_dictionary_questions,

Nami~ Type Size Value

Question 2
Write pytho
that

at will create a dictionary containir d_kv
> the first 12 values of the Fibonacci seque
:0,2:1,3:1,4:2,5:3,6:5,7:8 etc} i int 1 12

dict 12 {1:0, 2:1, 3:1, 4:2, 5:3, 6:5, 7:8, 8:13, 9:21,

n int 12

12 #number of iteration in the fibonacci sequence
0 #first position of fibonacci sequence

1 #second position and impact of next sequence y int 233
v = {} #same as creating d_kv = dict ()

X int 144

Py

for i in range (1,n+1): #iterating the sequence starting
d_kv [i] = x # 1st sequence d_kv [1] = 0, d_kv [2] =
X,y =Y, Xty

print [{d_kv)

Variable explorer Help Plots Files
| V4
15:34:40)

‘[Console 1/A

Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020,
[MSC v.1827 64 bit (AMD64)]

Type "copyright", "credits" or "license" for more
information.

Question 3

Create a dictionary to represent the open, high, Tow, clc
for 4 imaginary companies. 'Python DS', 'PythonSoft', 'Py
the 4 sets of data are [12.87, 13.23, 11.42, 13.10],[23.f

[98.99,102.34,97.21,100.065],[203.63,207.54,202.43,205.2¢ In [1]:

IPython 7.19.0 -- An enhanced Interactive Python.

. n 12 #number of iteration in the fibonacci
companies = ['Python DS',

status = ['Open', 'High', 'Low', 'Close']
prices = [[12.87, 13.23, 11.42, 13.10],[283.54,25.76,21.¢
[98.99,102.34,97.21,100.065],[203.63,207.54,202.43,205.2¢

d_sp = {}

'PythonSoft', 'Pythazon', 'Pybc

sequence

X
y
d

= 0 #first position of fibonacci sequence
= 1 #second position and impact of next sequence
_kv = {} #same as creating d_kv = dict ()

#iteratina the seauence
IPython console History
Line 58, Col 13 UTF-8 CRLF RW

for i in ranaoe (1 n+1)-

¥ LSP Python: ready # Kite: initializing ® custom (Python 3.9.0) Mem 51%
e ———

Edit View Run Kernel Tabs Settings

+ c
> notebooks
Name Last Modified
™ Dataipynb seconds ago
« [A] Fasta.ipynb
A Julia.ipynb 20 minutes ago

10 minutes ago

- [A] Ripynb & minutes ago

w

2
=
w
-]
f=
<
£
£
S
(=]
o
8
(=
=
o
w
5
=

In [17]:

Out[17]:

Open a CSV file using Pandas

import pandas
df = pandas.read_csv('../data/iris.csv')
df.head(5)

sepal_length sepal_width petal_length petal_width
5.1 35 14 02
49 30 14 02
47 32 13 02
48 31 15 0.2
50 36 14 02

from IPython.display import GeoJSON
GeoJSON(s, layer_options={'minZoom': 11})

S TR ST T

~ Bethesd

!

|

v,
rdale . 20

8

=\ %bro(/:k

Cell — Code

Output

https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

$ jupyter notebook

Jupyter notebook

-When iIn Command mode (esc/gray),

'he
ne
ne

ne

Key Wi
Key wi
Key Wi

Key Wi

make a new cell below the currently selected cell.
make one above.

delete the current cell.

undo your last cell operation (which could be a

deletion, creation, etc).

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Jupyter notebook

Markdown great for commenting/adding notes to your code!

A simple plain-text format for writing lists, links, and other things that might go into a
web page.

Turn the current cell into a Markdown cell by entering the Command mode (Esc)
and press the M key.

will disappear to show it is no longer a code cell and you will be able to write In
Markdown.

Turn the current cell into a cell by entering the Command mode () and
press the y key

Markdown — html

* Use asterisks
* to create
* bullet lists.

G |_S1S

A Level-1 Heading C— Headings
A Level-2 Heading (etc.)

[Create links](http://software-carpentry.org) with “... .
<+ urls + links
Or use [named links][data carpentry]. [data_carpentry]:

http://datacarpentry.org

Outline for today

e Setup Anaconda

* Running Python

e Variables and Assighment Qe
* Data Type

* Built-in functions

* Packages

* Conditionals

* Loops

Variables and Assignments

* In Python the symbol assigns the value on the right to the name on
the left

* age =42
* my_name = ‘Crisel Suarez’
* Gradel = A

* \Variable names

e can only contain letters, digits, and underscore _
e cannot start with a digit

 are case sensitive (age, Age and AGE are three different variables)

Variables and Assignments

* first_name = ‘Kathy’
* age =10
e print(first_name, 'is', age, 'years old’)

e Variables can be used in calculations:
* new_age =age +10

* Indexin
- 5 *** Python indexing starts at 0 ***
 print(first_name][0]

Outline Wednesday

e Jupyter Magic Commands ~ <G
* Indexing and Slices

* Lists

* Built-in Functions

* Conditionals

* Loops

* Functions

Key Points

e Use variables to store values.

* Use

* Varia
* Varia
* Varia

0

to display values.
es persist between cells.
es must be created before they are used.
es can be used in calculations.

Jupyter Magic Commands

* %run

* %%time

* % who

* %who str | % who int
* %pinfo <variable>

* %env

* %matplotlib inline
* %load

° %lsmagic https://www.tutorialspoint.com/jupyter/ipython magic commands.htm

https://www.tutorialspoint.com/jupyter/ipython_magic_commands.htm

Jupyter Magic Commands

e Can run Unix commands straight from your Jupyter Notebooks

* Almost all the things we learned in Unix we can use in Jupyter
Notebooks

Data Types

e str() — String
* Concatenation
* Repetition

* int()- integer
* Float() - decimals
* Type() > What kind of data type

Math

e Add

e Subtract

* Multiply

* Divide

* Power

* Reminder

* Absolute value

Operators

* Equal to ==

* Not equal to !=

* Greater than >

* Less than <

e Greater or equal >=
* Less or equal <=

Operators

* and

* Or

* in (Membership)

* not in (Membership)
* True

* False

Outline Wednesday

* Jupyter Magic Commands

* Indexing and Slices
* Lists

* Built-in Functions

* Conditionals

* Loops

* Functions

Indexing and Slices

e atom_name = 'sodium’

e print(atom_name)
e >sod

(atom_name)
°6

Outline Wednesday

* Jupyter Magic Commands
* Indexing and Slices

° LiStS < m—

* Built-in Functions

* Conditionals

* Loops

* Functions

Lists

Storing multiple variables

pressures = [0.273, 0.275, 0.277, 0.275, 0.276]

print('pressures:’, pressures)
print(‘'length:’, len(pressures))
print('zeroth item of pressures:', pressures[0])

pressures[0] = 0.265

Lists — Appending

* list_ name. ()

e primes = [2, 3, 5]

e print('primes is initially:', primes)
* primes. (7)

 print('primes has become:', primes)

Lists — Deleting

list_ name[index] to remove an element from a list

e primes=1(2,3,5,7,9]

e print('primes before removing last item:', primes)
* del primes[4]

e print('primes after removing last item:', primes)

List- Empty []
* Empty_list =[]

* Helpful as a starting point for collecting values

Practice:

* print('string to list:', ('tin’))
e print('list to string:'," (['g",'0","l', 'd’]))

What does do?
What does do?

*We will come back to list with Numpy’s version ...arrays

Key Points

* Use an index to get a single character from a string.

e Use a slice to get a substring.

e Use the built-in function to find the length of a string.
* Python is case-sensitive.

e Use meaningful variable names

Dictionaries or

Mutable key-value pairs

e z00 = {‘cats’ : 4, ‘dogs’: 5, ‘goats’: 3, ‘camels’ : 2 }
e person = dict(hame = "John", age = 36, country = "Norway")

e zoo[‘cats’]
e >/

e z00.keys()
e zoo.values()
e zoo.items()

Dictionaries

e food = {‘breakfast’ : 2, ‘lunch’: ‘salad’,
‘dinner’: {‘first_course’ : ‘soup’,
‘second_course’: ‘chicken’ }

desert = [‘flan’, ‘coockies’, ‘NY_cheesecakes’]}

e food['dinner']['first_course’]
e food['dessert'][0]

Tuple —

* Tuples are used to store multiple items in a single variable.
* A tuple is a collection which is ordered and unchangeable.
e Tuples are written with parentheses

* Allows duplicated items
thistuple = ("apple", "banana", "cherry")

thistuple = ("apple", "banana", "cherry", "apple", "cherry")

Sets —

* Unordered
* Unchangeable
* No duplicate values.

thistuple = {"apple", "banana", "cherry”}

thistuple = {"apple", "banana", "cherry", "apple", "cherry”}

Python Collections

* List is a collection which is ordered and changeable. Allows duplicate
members.

* Tuple is a collection which is ordered and unchangeable. Allows
duplicate members.

e Set is a collection which is unordered and unindexed. No duplicate
members.

* Dictionary is a collection which is ordered™* and changeable. No
duplicate members.

Outline Wednesday

* Jupyter Magic Commands

* Indexing and Slices

* Lists

* Built-in FuNCtions <
* Conditionals

* Loops

* Functions

Built-in functions

 Think math function
* f(x) =x+5
* X -> input

* f(x) -> output

* Functions can take 0 or many arguments
e print()
e f(x1, x2, x3,...) = X1+ x2+x3 +.....

Built-in functions

* max(1,2,3)
* min(5,6,7)
* round(3.712, 1) #rounds to 1 decimal place

* help(round)

Functions attached to objects are called
methods

* Methods have parentheses like functions, but come after the
variable.

my_string = 'Hello world!" # creation of a string object

print(my_string.swapcase())
calling the swapcase method on the my_string object

Outline Wednesday

* Jupyter Magic Commands
* Indexing and Slices

* Lists

* Built-in Functions
 Conditionals @ ———

* Loops

* Functions

Conditionals

—
——
-

if (condition is True): IEYOUR/STATEMENT IS/AN
NI

then do something

e if (condition is True):
then do something
e else:
Do something else

* if (condition is True):
then do something
e elif (this condition is true):
* then do this
e else:
e Do this

-MEGENETALONNET

Conditionals — Try it out

mass =3.4
If mass > 3.0:
e print(‘Massis’, mass)

if mass > 3:

e print(‘Mass is less than 3’)
else:

e print(‘Mass is more than 3’)

if mass < 3.7:
print(‘mass less than 3.7%)
elif (if mass > 3.2):
e print(‘mass greater than 3.2’)
else:
* print(mass greater than 3.7 or
less than 3.2)

Conditionals — Try it out

mass = 3.4
If ((mass <3.7) (mass >3.2)):

print(mass less than 3.7 or
greater than 3.2)

mass = 3.4
If ((mass<3.7) (mass >3.2)):

print(mass less than 3.7 or
greater than 3.2

mass = 3.8

If ((mass < 3.7) (mass >3.2)):

e print(mass less than 3.7 or
greater than 3.2

mass = 3.8

If ((mass<3.7) (mass >3.2)):

e print(mass less than 3.7 or
greater than 3.2

pandq p porgq

Outline Wednesday

* Jupyter Magic Commands
* Indexing and Slices

* Lists

* Built-in Functions

* Conditionals

°* LOOPS @—

* Functions

Initialization Expression

Test
Condition

for Loop Body

Update Expression

Loop Terminates

Loops

e for numberin [2, 3, 5]:
e print(number)

e primes = [2, 3, 5]

 for p in primes:
e squared=p ** 2
e cubed=p **3
 print(p, squared, cubed)

Loops

* The built-in function range produces a sequence of numbers.

* Not a list: the numbers are produced on demand to make looping
over large ranges more efficient.

* print('a range is not a list: range(0, 3)’)

e for number in range(0, 3):
e print(number)

https://docs.python.org/3/library/stdtypes.html

Loops — Practice

» # List of word lengths: ["red"”, "green”, "blue"] =>[3, 5, 4]
* |lengths =

e for word in ["red", "green", "blue"]:
* lengths. ()

* print(lengths)

Loops — Practice

» # List of word lengths: ["red"”, "green”, "blue"] =>[3, 5, 4]
* |lengths =

e for word in ["red", "green", "blue"]:
* lengths. ()

* print(lengths)

Loops — Practice

e # Concatenate all words: ["red", "green”, "blue"] => "redgreenblue”
* words = ["red", "green”, "blue"]
* result =

e for in

e print(result)

Loops — Practice

e # Concatenate all words: ["red", "green”, "blue"] => "redgreenblue”
* words = ["red", "green”, "blue"]
* result =

e for in

e print(result)

Practice

* Write a program that prints the following pattern:

*

* %k

* %k %

* %k %k Xk
* 3k %k %k %k

* 3k %k % 3k Xk

Practice

* Write a program that prints the following pattern:

for star in range(7):
k
print('*’ * star)
%k kK
%k K k
k Kk k Xk
k Kk k %k k

* 3k %k % 3k Xk

Outline- Friday

* Loops (cont.)
* Functions

* Packages
* Numpy
* Pandas
* Matplotlib

* Mini Project?

Practice

* Write a program that prints the following pattern:

*

* %k

* %k %

* %k %k Xk
* 3k %k %k %k

* 3k %k % 3k Xk

Practice

* Write a program that prints the following pattern:

for star in range(7):
k
print('*’ * star)
%k kK
%k K k
k Kk k Xk
k Kk k %k k

* 3k %k % 3k Xk

While Loops

* Need to define an indexing variable***

- i=1
| =
. while i < 6:
while i < 6: ..
orint(i) print(i)
i +=1 =d
else:

print("i is no longer less than 6")

Loop can run forever

Conditionals + Loops

i1=0 masses = [3.54, 2.07, 9.22, 1.86, 1.71]
while i < 6: for m in masses:
4= 1 if m>3.0:

PR print(m, 'is large’)

print(”i is 3”)
print(i)

else:
print(m, ‘is small’)

Loops

* continue - stop the current iteration, and continue with the next

fruits = i =20
["apple"”, "banana", "cherry"] while 1 < 6:
for X in fruits: i +=1
if == "banana": if i ==
continue continue

print(x) print(i)

Loops

* break - stop the loop even if the while condition is true

fruits = i =1

["apple”, "banana", "cherry"] while i < 6:

for x in fruits: print(i)
print(x) if i ==
if x == "banana": break

break i +=1

Loops

* pass — "Empty loop”

for x in [0, 1, 2]:
pass

Nested Loops

persons = ["John", '"Marissa", "Pete", "Dayton"]
= ["Japanese", "American'", '"Mexican",
"French"]

person 1n persons:
in
print (person + " eats " +)

Nested Conditionals

num = float(input("Enter a number: "))

if num >=0:
if num == 0:
print("'Zero")
else:
print("Positive number")
else:

print("Negative number")

Keypoints

e Use statements to control whether or not a block of code is
executed.

e Conditionals are often used inside loops.

e Use to execute a block of code when an condition is not true.
e Use to specify additional tests.

* Create a table showing variables’ values to trace a program’s
execution.

Keypoints

* A Joop executes commands once for each value in a collection.
* A loop is made up of a collection, a loop variable, and a bodly.

* The first line of the for loop must end with a colon, and the body
must be indented.

* Indentation is always meaningful in Python.

* Make meaningful loop variables
* The body of a loop can contain many statements.

» Use range to iterate over a sequence of numbers.

Outline Wednesday

* Jupyter Magic Commands
* Indexing and Slices

* Lists

* Built-in Functions

* Conditionals

* Loops

* Functions -G

Functions

***Functions return something

print_greeting():
('Hello!')

print_date(year, month, day):
joined = str(year) + '/ + str(month) + /" + str(day)
(joined)

average(values):
if len(values)
return None
return sum(values) / len(values)

Practice

* Fill in the blanks to create a function that takes a list of numbers as an
argument and returns the first negative value in the list. What does
your function do if the list is empty?

def first_negative(values):

for v
if

return

Practice

* Fill in the blanks to create a function that takes a list of numbers as an
argument and returns the first negative value in the list. What does
your function do if the list is empty?

def first_negative(values):
for vin values:
if v
returnv

Functions + Variable Scope

* Global variable
* Defined outside any particular function.
* Visible everywhere.

pressure

def adjust(t):
* Defined inside the function. t pressure
* Not visible in the main program. return temperature

Keypoints

Break programs down into functions to make them easier to understand.
Define a function using with a name, parameters, and a block of code.
Defining a function does not run it.

Arguments in call are matched to parameters in definition.

